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Abstract Dynamical system methods are used in the study of the stability of spatially flat
homogeneous cosmologies within a large class of generalized modified gravity models in
the presence of a relativistic matter-radiation fluid. The present approach can be considered
as the generalization of previous works in which only F(R) cases were considered. Models
described by an arbitrary function of all possible geometric invariants are investigated and
general equations giving all critical points are derived.
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1 Introduction

Recent cosmological data support the fact that there is a strong evidence for a late accel-
erated expansion of the observable universe, apparently due to the presence of an effective
positive and small cosmological constant of unknown origin. This is known as dark energy
issue (see for example [1–5]).

Modified gravity models are possible realizations of dark energy (for a recent review and
alternative approaches see [6, 7]), which may offer a quite natural geometrical approach
again in the spirit of the original Einstein theory of gravitation. In fact, the main idea un-
derlying these approaches to dark energy puzzle is quite simple and consists in adding to
the gravitational Einstein-Hilbert action other gravitational terms which may dominate the
cosmological evolution during the very early or the very late universe epochs, but in such
a way that General Relativity remains valid at intermediate epochs and also at non cosmo-
logical scales. They are generalization of the �CDM model, namely Einstein gravity plus a
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positive cosmological constant, the simplest model for dark energy, which however has to be
confronted with well known difficulties, among them, the cosmological constant problem,
an unsolved issue so far. We also note that realistic models of f(R) gravity may realistically
describe not only unification of inflation with dark energy but also dark matter as it was
demonstrated in [8].

In the present paper, first of all we shall generalise the analysis presented in [9], where the
stability of the de Sitter solution (the vacuum invariant submanifold) has been investigated
in a class of modified gravitational cosmological models defined in a Friedmann-Robertson-
Walker (FRW) spatially flat space-time. The method is well known and consists in rewriting
the equations of motion as a system of first-order autonomous differential equations and
makes use of the theory of dynamical systems (see [10–16] and references therein). We
remind that the stability or instability issue is really relevant in cosmology. For example,
in the �CDM model it ensures that no future singularities will be present in the solution.
Within cosmological models, the stability or instability around a solution is of interest at
early and also at late times.

Then we will introduce also matter/radiation in the model and we shall generalise the
method given in [12], which permits to determine all critical points of a F(R) model. Ordi-
nary matter is important in reconstructing the expansion history of the Universe and probing
the phenomenological relevance of the models (see for example the recent papers [12–16],
where the F(R) case has been discussed in detail). Our generalisation consists in the exten-
sion of that method in order to include all possible geometrical invariants. This means that
F could be a generic scalar function of curvature, Ricci and Riemann tensors.

To our knowledge, besides the paper [17], the dynamical system analysis have been used
and critical points derived and analysed mainly for models described by an action of the
kind

S = Sm + 1

2χ

∫
d4x

√−gF(R), χ = 8πGN, (1.1)

F(R) being an arbitrary function of the scalar curvature R, GN the Newton’s constant and
Sm the matter action. The simplest choice F(R) = R−2� corresponds to the �CDM model.
Here we shall propose a method which will permit to derive the critical points also for
models described by a function F(Uk), Uk being generic geometric (higher-order) invariants
(see the Appendix).

Their interest has been recently triggered by the appearance of [18–20] and after that
investigated in many papers (see, for example [21–47]). Furthermore, very recently in [48–
55], new “viable” models have been introduced and discussed. In particular, in [56] the
possibility that also dark matter effects may be described within this class of models is
suggested.

With regard to the stability of the solutions, it has been discussed in several places, an in-
complete list being [57–71] and earlier references quoted in [49]. To this aim, different tech-
niques have been employed, including manifestly covariant and field theoretical approaches,
where the gauge issue has been properly taken into account. All these investigations are in
agreement with the following conditions which ensures the existence and the stability of the
de Sitter solution with scalar curvature R = R0:

{
2F(R0) − R0F

′(R0) = 0, existence,
F ′(R0)

R0F ′′(R0)
− 1 > 0, stability,

(1.2)

where F ′ and F ′′ are the derivatives of F(R) with respect to R and everywhere in the paper
the subscript 0 indicates quantities evaluated at the critical point. The first condition in (1.2)
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determines the scalar curvature of the de Sitter solution, while the second one gives the
condition for the stability around such a solution.

There are some theoretical (quantum effects and string-inspired) motivations in order to
investigate gravitational models depending on higher-order invariants. The “string-inspired”
scalar-Gauss-Bonnet gravity case F(R,G) has been suggested in [72] as a model for gravi-
tational dark energy, while some time ago it has been proposed as a possible solution of the
initial singularity problem [73–75]. The investigation of different regimes of cosmic accel-
eration in such gravity models has been carried out in [72, 76–93]. In particular, in [89] a
first attempt to the study of the stability of such kind of models has been carried out using
an approach based on quantum field theory.

The method we shall use in the present paper is based on a classical Lagrangian for-
malism [94–96], inspired by the seminal paper [97], where quantum gravitational effects
were considered for the first time. With regard to this, it is well known that one-loop and
two-loops quantum effects induce higher derivative gravitational terms in the effective grav-
itational Lagrangian. Instability due to quadratic terms have been investigated in [98–100].
A particular case has been recently studied in [101–103] and general models depending on
quadratic invariants have been investigated in [104–107].

A stability analysis of nontrivial vacua in a general class of higher-derivative theories
of gravitation has already been presented in [108]. Our approach is different from the one
presented there since we are dealing with scalar quantities and moreover it is more general,
since it is not restricted to the vacuum invariant submanifold.

Finally, it should be stressed that the stability studied here is the one with respect to
homogeneous perturbations. For the F(R) case, the stability criterion for homogeneous per-
turbations is equivalent to the inhomogeneous one [58–60].

The content of the paper is the following. In Sect. 2 we describe our general method in the
vacuum case and derive general conditions for existence and stability of de Sitter solutions
for arbitrary F(Uk) models. Then, in Sect. 3, we extend the method in order to include
matter/radiation and give the conditions which (in principle) permit to derive all critical
points. In Sect. 4 we analyse some specific models and finally we make some conclusions
in Sect. 5. For the reader convenience, the paper ends with an Appendix in which we derive
some interesting useful relations.

2 The General Case without Matter

In this section we would like to study the stability condition of de Sitter solutions for models
in which the Lagrangian density is an arbitrary function of all algebraic invariants built up
with the Riemann tensor of the FRW space-time we are dealing with, that is

L = − 1

2χ
F(R,P,Q, . . .), (2.1)

where R is the scalar curvature, P = RμνRμν and Q = Rαβγ δRαβγ δ are the two quadratic
invariants and the dots means other independent algebraic invariants of higher order.

For the sake of convenience we write the metric in the form

ds2 = −e2n(t)dt2 + e2α(t)d �x2, N(t) = en(t), a(t) = eα(t). (2.2)

In this way α̇(t) = H(t) is the Hubble parameter and the generic invariant quantity U has
the form

U = e−2pn(t)u(ṅ, α̇, α̈) = e−2pn(t)u(ṅ,H, Ḣ ) = H 2pe−2pn(t)u(X), (2.3)



Int J Theor Phys (2008) 47: 3186–3200 3189

where 2p is the dimension (in mass) of the invariant under consideration and X = (Ḣ /H 2 −
ṅ/H) (see the Appendix). In particular one has

R = 6e−2n
[
2H 2 + Ḣ − ṅH

] = 6H 2e−2n(2 + X),

P = 12e−4n
(
ṅ2H 2 − 3ṅH 3 − 2ṅHḢ + 3H 4 + 3H 2Ḣ + Ḣ 2

) = 12H 4e−4n(3 + 3X + X2),

Q = 12e−4n
(
ṅ2H 2 − 2ṅH 3 − 2ṅHḢ + 2H 4 + 2H 2Ḣ + Ḣ 2

) = 12H 4e−4n(2 + 2X + X2),

G = R2 − 4P + Q = 24e−4n(H 4 + H 2Ḣ ) = 24H 4e−4n(1 + X).

(2.4)

Using this notation, the action reads

S = −
∫

d3x

∫
dtL(n, ṅ, α, α̇, α̈) = 1

2χ

∫
d3x

∫
dten+3αF (n, ṅ, α̇, α̈) (2.5)

and the Lagrange equations corresponding to the two Lagrangian variables n(t) and α(t) are
given by

En = ∂L

∂n
− d

dt

∂L

∂ṅ
= 0, (2.6)

Eα = ∂L

∂α
− d

dt

∂L

∂α̇
+ d2

dt2

∂L

∂α̈
= 0. (2.7)

Since the function n(t) is a “gauge function”, which corresponds to the choice of the evolu-
tion parameter, we expect (2.7) to be a direct consequence of (2.6) and in fact a straightfor-
ward calculation leads to the identity (see (A.8) in the Appendix)

dEn

dt
= ṅEn + α̇Eα. (2.8)

As a consequence of such an identity we may limit our analysis to the use of (2.6), much
simpler than (2.7). Furthermore, we may use the gauge freedom and fix the cosmological
time by means of the condition N(t) = 1, that is n(t) = 0. From now on it is understood that
all quantities will be evaluated in such a gauge and so the parameter t corresponds to the
standard cosmological time. In this way (2.6) and (2.7) read

F + Fn − 3HFṅ − Ḟṅ = HḞḢ − HFH + F − ḢFḢ + 3H 2FḢ = 0, (2.9)

F̈Ḣ − ḞH + 6HḞḢ − 3HFH + 3F + 3ḢFḢ + 9H 2FḢ = 0, (2.10)

where FX = ∂XF means derivative of F with respect to X. All derivatives with respect to n

in (2.9) have been eliminated by using (A.6) in the Appendix.
In the next section we shall study all critical points of the system in the presence of

matter, while here we shall limit ourselves to determine the conditions for the existence
and the stability of de Sitter solutions in the absence of matter. To this aim we take into
account (2.9) and re-write it as a differential equation for the Hubble parameter H(t), that is

HFḢḢ Ḧ + H(FHḢ − FḢ )Ḣ + �(H, Ḣ ) = 0, (2.11)

where we have set

�(H, Ḣ ) = F − HFH + 3H 2FḢ . (2.12)
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We see that the condition for the existence of a de Sitter solution P0 ≡ (Ḣ = 0,H = H0) is

�(H0,0) = 0 �⇒ [
F − HFH + 3H 2FḢ

]
P0

= 0, (2.13)

where here all quantities have to be evaluated at P0. The latter condition, which gives rise to
the de Sitter critical point, can be simplified by means of (A.9) in the Appendix. In fact we
have

[
F − HFH + 3H 2FḢ

]
P0

= [
F − H 2FḢ

]
P0

= 0. (2.14)

In order to study the stability of such a solution we have to distinguish between two possible
cases. The simplest one occurs when F is linear in Ḣ , that is FḢḢ = 0. In such a case (2.11)
assumes the form

(HFHḢ − HFḢ − �Ḣ )Ḣ + �(H,0) = �(H,0) = 0 �⇒ H = H0. (2.15)

Then we see that in such a special case the solution, if it exists, is trivially stable, since the
field equation reduces to an algebraic equation which fixes the value of H in terms of the
parameters of the system. The Einstein’s theory with cosmological constant F = R − 2� is
an example of this kind and in fact (2.15) gives rise to H 2 = H 2

0 = �/3.
In the second case FḢḢ �= 0, in order to study the stability one may transform (2.11) in

an autonomous system by introducing the functions K(t) = Ḣ (t). In this way, one gets

Ḣ = K, K̇ = −�(H,K) + (HFHḢ − FḢ )K

HFḢḢ

. (2.16)

The critical points are determined by the condition (Ḣ = 0, K̇ = 0) and the linearized sys-
tem which determines the stability reads

(
δḢ

δK̇

)
= M

(
δH

δK

)
, M =

(
0 1
A0 B0

)
, (2.17)

where

A0 =
[
− �H

HFḢḢ

]
P0

=
[

FHH − 3HFHḢ − 6FḢ

FḢḢ

]
P0

, (2.18)

B0 =
[

FḢ − HFHḢ − �Ḣ

HFḢḢ

]
P0

= −H0. (2.19)

The stability conditions are obtained by requiring TrM < 0 and detM > 0. The first condi-
tion is trivially satisfied since H0 is positive, while the second one gives

[
3HFHḢ − FHH + 6FḢ

FḢḢ

]
P0

> 0. (2.20)

Summarizing, we have the general results
⎧⎨
⎩

[
F − H 2FḢ

]
P0

= 0, critical points,[
3HFHḢ −FHH +6FḢ

FḢḢ

]
P0

> 0, stability condition when FḢḢ �= 0.
(2.21)

In the particular case in which FḢḢ = 0 the eventual (de Sitter) critical point is always
stable. Of course, when F = F(R), (2.21) become equivalent to (1.2).
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3 The General Case with Matter

The inclusion of matter in the model is obtained by adding the matter action Sm to the
gravitational action (2.5). Of course, in order to preserve symmetry we have to consider
homogeneous and isotropic matter, that is a perfect fluid. First of all we observe that

δSm

δn
δn = −

∫
d4x

√−gT00g
00δn, (3.1)

δSm

δα
δα = −

∫
d4x

√−gTabg
abδα, (3.2)

where Tμν ≡ (T00, Tab) is the energy-momentum tensor, which for a perfect fluid satisfies
the conditions

T00g
00 = −ρ, Tabg

ab = 3p, a, b = 1,2,3,

ρ and p = p(ρ) being respectively the density and the pressure of matter.
Now (2.6) and (2.7) trivially changes for the presence of matter and in fact we get

En = ∂L

∂n
− d

dt

∂L

∂ṅ
= 2

√−gT00g
00 = 2ρ

√−g, (3.3)

Eα = ∂L

∂α
− d

dt

∂L

∂α̇
+ d2

dt2

∂L

∂α̈
= √−gTabg

ab = −6p
√−g. (3.4)

The identity (2.8) is still valid and is equivalent to the energy-momentum conservation law

∇μT μν = 0 �⇒ ρ̇ = −3H(ρ + p). (3.5)

Using the notation of the previous section and putting again n(t) = 0 now we get

HḞḢ − HFH + F − ḢFḢ + 3H 2FḢ = 2ρ, (3.6)

F̈Ḣ − ḞH + 6HḞḢ − 3HFH + 3F + 3ḢFḢ + 9H 2FḢ = −6p. (3.7)

The latter equations are the generalisation to arbitrary action of the well known Friedmann
equations. It is interesting to observe that in the pure Einstein gravity, that is for F = R, they
read

H 2FḢ = FX = 2ρ �⇒ ρ = 1, (3.8)

(3H 2 + 2Ḣ )FḢ = (3 + 2X)FX = −6p �⇒ p = −1 − 2

3
X, (3.9)

where we have introduced the dimensionless variables

ρ = 2ρ

H 2FḢ

= 2ρ

FX

, p = 2p

H 2FḢ

= 2p

FX

, (3.10)

which in this special case are given by the usual values ρ = ρ/3H 2 and p = p/3H 2.
From (3.8) and (3.9) it follows

w ≡ p

ρ
= ρ

p

= −1 − 2

3
X. (3.11)
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In the general case, (3.6) and (3.7) have more terms with respect to (3.8) and (3.9) and it is
quite natural to interpret them as corrections due to the presence of higher-order terms in the
action. Then we define

eff
ρ = ρ + curv

ρ = 1, eff
p = p + curv

p = −1 − 2

3
X, (3.12)

weff ≡ 
eff
p


eff
ρ

= −1 − 2

3
X, (3.13)

where curv
ρ and curv

p are complicated expressions, which only depend on the function F .
They can be derived from (3.6) and (3.7), but they explicit form is not necessary for our
aims. The effective quantity weff is equal to the ratio between the effective density and the
effective pressure and it could be negative even if one considers only ordinary matter. It is
known that the current-measured value of weff is near −1.

In order to get all critical points of the system now we follow the method described in
[12]. First of all we introduce the dimensionless variables

ρ = 2ρ

H 2FḢ

= 2ρ

FX

, p = 2p

H 2FḢ

= 2p

FX

, (3.14)

X = Ḣ

H 2
, Y = F − HFH

H 2FḢ

= F

FX

− X, Z = ḞḢ − FH

HFḢ

= F ′
X

FX

− 2X − ξ, (3.15)

where the prime means derivative with respect to α and the quantity

ξ = ξ(X,Y ) = FH

HFḢ

= HFH

FX

, (3.16)

has to be considered as a function of the variables X and Y . In general it is a function of X

and H , but this latter quantity can be expressed in terms of X and Y as a direct consequence
of the definition of Y itself. Then we derive an autonomous system by taking the derivatives
of such variables. From (3.6) we have the constraint

ρ = Y + Z + 3 �⇒ curv = −(Y + Z + 2), (3.17)

which reduces to the standard one when F is linear in R (general relativity with cosmologi-
cal constant).

Differentiating the variables above by taking into account of (3.5) and (3.7) we get the
system of first order differential equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X′ = −2X2 − γX + β(Z + ξ),

Y ′ = −(2X + Z + ξ)Y − XZ,

Z′ = −3p − [X(Z + 6) + Z(Z + ξ + 6) + 3(Y + ξ + 3)],
′

ρ = −3(ρ + p) − (2X + Z + ξ)ρ,

′
p = −3 dp

dρ
(ρ + p) − (2X + Z + ξ)p,

(3.18)

where X′ ≡ dX
dα

= 1
H

dX
dt

and so no and p = p(ρ) has been assumed. The first equation in
(3.18) has been obtained by deriving the function FḢ with respect to t and putting

β = β(X,Y ) = FḢ

H 2FḢḢ

= FX

FXX

, γ = γ (X,Y ) = FHḢ

HFḢḢ

= HFHX

FXX

= βξX + ξ.

(3.19)
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It is understood that FḢḢ �= 0 has been assumed.
Note that in principle one could consider a mixture of different kind of matter/radiation

with densities ρk and corresponding pressures pk . In such a case in (3.18) there will appear
the sums of the corresponding quantities ρk

and pk
and the corresponding differential

equations for any type of matter/radiation. For simplicity here we consider only one type of
matter/radiation described by the equation of state p = p(ρ).

In general, among the five differential equations (3.18) only three of them are linear
independent for the presence of the constraint (3.17) and the equation of state. For simplicity
now we assume the pressure to be proportional to the density, that is p = wρ, with constant
w, where for ordinary matter 0 ≤ w ≤ 1/3 (w = 0 corresponds to dust, while w = 1/3 to
pure radiation), but in principle one could also consider “exotic” matter with w < 0 and
cosmological constant which corresponds to w = −1. With this choice and from (3.17) we
get

p = wρ, ρ = Z + Y + 3. (3.20)

As a consequence the autonomous system which gives rise to the critical points can be
chosen as

⎧⎪⎨
⎪⎩

0 = X′ = −2X2 − γX + β(Z + ξ)

0 = Y ′ = −(2X + Z + ξ)Y − XZ

0 = Z′ = −3(1 + w)(Z + Y + 3) − (Z + ξ)(Z + 3) − X(Z + 6)

(3.21)

and ρ at the critical points will be determined by means of (3.17). The critical points are
the solutions of the algebraic system (3.21). The number and the position of such points
depends on the Lagrangian throughout the functions β,γ and ξ . In principle, given F one
can derive all critical points as the constant solutions of (3.21), but in practice for a generic
F the algebraic system could be very complicated and the solutions quite involved. We shall
consider in detail some particular cases in the next section.

A brief comment about the equivalence of (3.21) and (3.6)–(3.7) is in order. It is well
known that the Gauss-Bonnet scalar G does not contribute to the field equations, because it
is a topological invariant and this means that the field equations (3.6)–(3.7) are invariant
with respect to the transformation F → F + cG, c being an arbitrary constant. On the
contrary, the new variables X,Y,Z (by definitions) are not invariant with respect to such
a transformation and so the system (3.21) could contain the parameter γ explicitly, but
nevertheless the solutions for H(t) do not depend on such a parameter. The same thing is
true for the critical points.

It has also to be noted that in general, given a Lagrangian F , there are solutions of the
system (3.21), which give rise to trivial or unphysical models. Of course such solutions have
to be dropped (see specific examples).

Before to analyse all possible solutions of (3.21), we observe that in the absence of matter
the de Sitter solution X = 0 of course is a critical point for the system if the first equation in
(2.21) is satisfied. In fact we trivially see that X = 0, ρ = Y + Z + 3 = 0 satisfy (3.21) if
Y −ξ +3 = 0, which is equivalent to first equation in (2.21) when X = 0. (Strictly speaking,
the condition Y = 1 is equivalent to (2.21), when H0 �= 0. In principle, (2.21) can also have
the Minkowskian solution R0 = 0.) On the de Sitter solution the value of weff is exactly
equal to −1. By taking the variations of (3.21) with respect to X and Y on the critical point
and using the identity (A.9) in the Appendix we also get the stability condition in (2.21).

In order to show that the present approach is a generalisation of the one proposed in [12],
we observe that when the function F = F(R) depends on the unique invariant U = R, we
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exactly obtain all known results. For such a special case, using (2.4) (with n(t) = 0) and
(A.5)–(A.6) in the Appendix we get

ξ = HFH

FX

= 2pU

UX

− 2X = 4, (3.22)

β = FX

FXX

= FUUX

FUUXX + FUUU 2
X

= FR

6H 2FRR

, (3.23)

γ = HFHX

FXX

= βξX + ξ = 4. (3.24)

Now with the trivial replacement

X = x3 − 2, Y = x2 − x3 + 2, Z = −(x1 + 4), β = x3

m
. (3.25)

Equations (3.18) become equivalent to the analog equations in [12], where this class of
models have been studied in detail.

As already said above, the critical points of (3.21) depends on ξ,β, γ , which in general
are complicated functions of X and Y , then it is not possible to determine general solutions
without to choose the model, nevertheless it is convenient to distinguish two distinct classes
of solutions characterised by the values of w �= −1 and w = −1. For the sake of complete-
ness we consider w ≤ 1/3 and so we write the solutions also for “exotic” matter, that is
quintessence (−1 < w < 0) and phantom (w < −1). Of course, such solutions have to be
dropped if one is only interested in ordinary matter/radiation. We have

• w �= −1—The critical points are the solutions of the system of three equations

⎧⎪⎨
⎪⎩

2X2 + γX − β(Z + ξ) = 0

(2X + Z + ξ)Y + XZ = 0

3(1 + w)(Z + Y + 3) + (Z + ξ)(Z + 3) + X(Z + 6) = 0

w �= −1, (3.26)

where ξ,β, γ are functions of X,Y determined by (3.16) and (3.19). The stability matrix
has three eigenvalues and the point is stable if the real parts of all of them are negative.

The latter system has always the de Sitter solution P0 ≡ (X = 0, Y = 1,Z = −4),
where ρ = 0 and weff = −1. Note however that such a solution could exist also in the
presence of matter, since the existence of P0 critical point only implies that the critical
value for ρ vanishes.

• ρ �= 0, w = −1—The critical points are given by

⎧⎪⎨
⎪⎩

2X2 + γX − β(Z + ξ) = 0

(2X + Z + ξ)Y + XZ = 0

(Z + ξ)(Z + 3) + X(Z + 6) = 0

w = −1. (3.27)

For this class of solutions, the non-singular stability matrix has three eigenvalues and the
point is stable if the real parts of all of them are negative.

We see that there is at least one singular case (critical line) when X = 0 and Z = −ξ =
−4. In fact in such a case Y or ρ are undetermined since

ρ = Y + 3 − ξ(0, Y ) = Y − 1 �⇒ Y = 1 + ρ, ρ arbitrary. (3.28)
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Such a solution can be seen as a generalisation of the de Sitter solution for a model
with cosmological constant. The de Sitter critical point for the model F̃ = F − 2� reads
(X = 0, Ỹ = 1, Z̃ = −4). Such a solution follows from (3.28) if we choose ρ0 ≡ �. In
fact, on the critical point (X = 0, Y = 1+ρ,Z = −4) (3.28) and from definitions (3.15)
we get

ρ = 2ρ

H 2FḢ

= F

H 2FḢ

− 1 �⇒ Ỹ ≡ F̃

H 2F̃Ḣ

= 1, (3.29)

which corresponds to de Sitter critical point for F̃ . Of course, (3.28) is more general than
the case with pure cosmological constant since ρ is not necessary a constant.

Of course for this special class of solutions weff = −1. Note also that the stability
matrix has always a vanishing eigenvalue and the stability of the system is determined by
the other two eigenvalues.

For some models, but just for technical reasons, it could be convenient to treat the
cosmological constant as matter, using the previous identification we have done.

4 Explicit Examples

In order to see how the method works, now we give explicit solutions for some models and,
when possible we also study the stability of the critical points. We restrict our analysis to
the values 0 ≤ w ≤ 1/3 and to the special value w = −1, which corresponds to the pure
cosmological constant, but in principle any negative value of w could be considered, even
if this will be in contrast with the aim of modified gravity. In fact, modified gravity can
generate an effective negative value of w without the use of phantom or quintessence.

It as to be stressed that in general, due to technical difficulties, one has to study the
models by a numerical analysis. Only for some special cases one is able to find analytical
results. Here we report the results for some models of the latter class in which the analytical
analysis can be completely carried out. We also study more complicated models and for
those we limit our analysis to the de Sitter solutions. The phenomenological analysis of
such models can be found in [109].

In the following we shall use the compact notation

P ≡ (X,Y,Z,ρ,weff ), P0 ≡ (0,1,−4,0,−1),

P� = (0,1 + �,−4,�,−1).
(4.1)

The latter is an additional critical point that we have for the choice w = −1 and can be seen
as the de Sitter solution in the presence of cosmological constant.

F = R − μ4/R—This is the well known model introduced in [18–20] and discussed in [12].
For this model the system (3.21) with arbitrary w has six different solutions, but only two
of them effectively correspond to physical critical points, if 0 ≤ w ≤ 1/3. In principle there
are other critical points for negative values of w (phantom or quintessence) and moreover
there is also a particular solution for w = −1 which corresponds to the model with a cos-
mological constant �.
Solving the autonomous system one finds

• P = P0: unstable de Sitter critical point. The critical value for the scalar curvature reads
R0 = √

3μ2.
• P = (−1/2,−1,−2,0,−2/3): stable critical point. At the critical value, H0 = 0.
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• P = (3(1 + w)/2,−(5 + 3w),−2(5 + 3w),−3(4 + 3w),−(2 + w)): unstable critical
point where H0 = 0.

• P = P�: unstable critical point. At the critical value one has H 2
0 = (�/6)(1 +√

1 + 3μ4/4�2.

F = R + aR2 + bP + cQ—(Starobinsky-like model). Here we have to assume 3a+b+c �=
0 otherwise the quadratic term becomes proportional to the Gauss-Bonnet invariant. For
0 ≤ w ≤ 1/3, this model has only one critical point. In order to have a de Sitter solution,
we have to introduce a cosmological constant �. We have in fact

• P = P0: Minkowskian solution with R0 = 0, which is stable if 3a + b + c > 0.
• P = P�: de Sitter critical point with R0 = 6�, which is stable if 3a + b + c > 0, in

agreement with [107].

F = R − d2Q3—This is the simplest toy model with the cubic invariant Q3 =
Rαβγ δRαβμνR

μν

γ δ . For this model we have the following critical points:

• P = P0: unstable de Sitter solution with R0 = 6/d .
• P = P0: stable Minkowskian solution with R0 = 0.
• P = (0.05,0.60,−3.60,0,−1.03): stable solution with H0 = 0.
• P = P�: this point exists, but not for any value of d and �. Also the value of H0 and the

stability depend on the parameters.

F = R + aR2 + bP + cQ − d2Q3—This is a generalisation of the previous two models. It
may be motivated by the two-loop corrections in quantum gravity [110, 111]. The de Sitter
critical points have been studied in [9]. The algebraic equations (3.21) are too compli-
cated to be solved analytically, but it is easy to verify that there are at least the following
solutions:

• P = P0: de Sitter solution with R0 = 6/d . This is stable if 3a + b + c + 3d > 0.
• P = P0: Minkowskian solution with R0 = 0, which is stable if 3a + b + c > 0.
• P = P�: also in this case this point exists and is stable depending on the parameters (see

[9]).

5 Conclusion

In this paper we have presented a general technique which permits to arrive at a first or-
der autonomous system of differential equations classically equivalent to the equations of
motion for models of modified gravity based on an arbitrary function F(R,P,Q,Q3 . . .),

namely built up with all possible geometric invariant quantities of the FRW space-time. Dy-
namical system techniques have been applied to the investigation of critical points. We have
shown that, in the special case of F(R) theories, the method gives rise to the well known
results [12–15], but in principle it can be applied to the study of much more general cases.

As applications, we have considered some simple models, for which a complete ana-
lytical analysis have been carried out. However, in general, due to technical difficulties, a
numerical analysis is required. Among the models investigated, we would like to remind
that we were able to deal with one which involves a cubic invariant in the curvature tensor
and, to our knowledge, this has never been considered before, and this shows the power of
our approach.
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Appendix

Here we show that in the cases we are considering, (2.8) is always satisfied. To this aim, as
in (2.3), we denote by U(x) a generic invariant quantity of dimension 2p (in mass) computed
in the system of coordinates {x} ≡ {(t, �x)} and by Ũ (y) the same quantity computed in the
system {y} ≡ {(τ, �y)}. Such coordinates are chosen in such a way that dτ = en(t)dt and as a
consequence the metrics read

ds2 = −e2n(t)dt2 + e2α(t)d �x2 = −dτ 2 + e2α̃(τ )d �y2. (A.1)

Recalling that U is built up with the Riemann tensor, for dimensional reasons in the system
{y} one has

Ũ (y) =
p∑

k=0

Ak

[
dα̃(τ )

dτ

]2(p−k) [
d2α̃(τ )

dτ 2

]k

, (A.2)

and since under diffeomorphism U is a scalar quantity we also have

U(x) = Ũ (y) = e−2pn(t)

p∑
k=0

Ak

[
dα(t)

dt

]2(p−k) [
d2α(t)

dt2
− dα(t)

dt

dn(t)

dt

]k

. (A.3)

This means that in a generic system of coordinates an arbitrary invariant can be written in
the form

U = e−2pnH 2p

p∑
k=0

AkX
k, X = α̈

α̇2
− ṅ

α̇
= Ḣ

H 2
− ṅ

H
. (A.4)

From the latter equation we directly get

Uṅ = −UX

H
, Un = −2pU,

UḢ = UX

H 2
, UH = 2pU

H
− 2ḢUX

H 3
+ ṅUX

H 2

(A.5)

and for a generic function F(U1,U2,U3, . . . ,Ua, . . .)

Fṅ = −FX

H
, Fn = −2

∑
a

paUaFUa ,

FḢ = FX

H 2
, FH = 2

H

∑
a

paUaFUa − 2XFX

H
− ṅFX

H 2
.

(A.6)

From equations above it directly follows

Fn + HFH + 2ḢFḢ + ṅFṅ = 0. (A.7)

After these considerations it is quite easy to recover (2.8). In fact, using (2.6), (2.7), (A.6)–
(A.7) we get

Ėn − ṅEn − α̇Eα = en+3α

2
[(ṅ + 3α̇)(Fn + HFH + 2ḢFḢ + ṅFn)

+ d

dt
(Fn + HFH + 2ḢFḢ + ṅFn)] = 0. (A.8)
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Before to end the appendix we also derive the useful relation

[
FH

HFḢ

]
(X=0,n=0)

= 4 �⇒
[
H∂H log

FH

FḢ

]
(X=0,n=0)

= 1. (A.9)

The latter identity can be derived as follows. From (A.6) we have

[
FH

HFḢ

]
(X=0,n=0)

=
[

HFH

FX

]
(X=0,n=0)

= 2
∑

a paA0(Ua)H
2paFUa∑

a A1(Ua)H 2paFUa

, (A.10)

where Ak(Ua) are the coefficients of the invariant Ua as in (A.4). Then (A.9) is true if for
any invariant Ua one has

2A1(Ua) = paA0(Ua). (A.11)

Such a relation is a direct consequence of the form of the Riemann tensor. In fact, in this
case the non vanishing components read

R0a0a = e2αH 2(1 + X), Rabab = −e−2ne4αH 2, a, b = 1,2,3

and since any invariant is built up with Riemann tensor it is easy to see that the relation
(A.11) is always satisfied.
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